
Essential Grid Workflow Monitoring Elements

Daniel K. Gunter, Keith R. Jackson, David E. Konerding, Jason R. Lee and Brian L. Tierney
Distributed Systems Department

Lawrence Berkeley National Laboratory
Berkeley, CA, USA

Abstract

Troubleshooting Grid workflows is difficult. A
typical workflow involves a large number of com-
ponents – networks, middleware, hosts, etc. – that
can fail. Even when monitoring data from all these
components is accessible, it is hard to tell whether
failures and anomalies in these components are
related to a given workflow. For the Grid to be
truly usable, much of this uncertainty must be elim-
inated. We propose two new Grid monitoring el-
ements, Grid workflow identifiers and consistent
component lifecycle events, that will make Grid
troubleshooting easier, and thus make Grids more
usable, by simplifying the correlation of Grid mon-
itoring data with a particular Grid workflow.

Keywords: Grid performance, Grid trou-
bleshooting, Grid Services1

1 Introduction

One of the central challenges of Grid comput-
ing today is that Grid applications are prone to fre-
quent failures and performance bottlenecks. The
real causes of failure are often hidden by interven-
ing layers of application, middleware, and operat-
ing systems. For example, assume a simple Grid
workflow has been submitted to a resource broker,
which uses a reliable file transfer service to copy
several files and then runs the job. Normally, this
process takes 15 minutes to complete, but two hours
have passed and the job has not yet completed. In

1Published in the Proceedings of the 2005 International
Conference on Grid Computing and Applications (GCA’05),
Las Vegas, USA

today’s Grid, it is difficult to determine what, if any-
thing, went wrong. Is the job still running or did
one of the software components crash? Is the net-
work particularly congested? Is the CPU particu-
larly loaded? Is there a disk problem? Is a software
library containing a bug installed somewhere?

In the simple case where the resources and mid-
dleware are only servicing one workflow, current
Grid monitoring systems can answer these ques-
tions by correlating the workflow performance with
the timestamps on the associated monitoring data.
But the whole point of a Grid is that resources and
middleware are shared by multiple workflows. In
this case, workflows will interleave their usage of
middleware, hosts and networks. At the highest
level of middleware, e.g., the resource broker in the
example above, there may be an identifier that can
track the workflow. But once the workflow leaves
that layer, there is very little beyond rough time cor-
relation to help identify which monitoring data is
associated with which workflow.

With enough monitoring data, and enough time
spent in analysis, troubleshooting is still possible.
For instance, network packet traces can reveal the
traffic patterns relevant to a given application (as-
suming ports and hosts are known); multiple runs
of the same workflow can allow better guesses at
which performance anomalies are correlated, and
which are due to other workflows; etc. But this is
tedious, non-reusable, work.

Fortunately, with the addition of two simple ele-
ments, we can improve the troubleshooting process
across the board. Previously, we have argued [14]
that Grid monitoring and troubleshooting systems
should have the following elements:



• Globally synchronized clocks (e.g., with NTP
[21]])

• End-to-end monitoring data (hosts, networks,
middleware, application)

• Archiving (e.g., logs, relational database)

• Standard data model (e.g., timestamp, name,
values)

• Dynamic control of monitoring granularity

The two new elements we propose are Grid
workflow identifiers (GIDs) and consistent compo-
nent lifecycle events. A GID is a globally unique
key that can track a Grid workflow across compo-
nents. The GIDs would be generated at the time
the workflow was created, and then transferred be-
tween layers of middleware and across administra-
tive domains. Component lifecycle events are mon-
itoring events that mark the start and end of ev-
ery component’s lifecycle in a consistent and useful
way; in particular they include the GID to identify
the workflow to which this lifecycle belongs.

1.1 Extended Use-Case

Assume the Grid workflow shown in Figure 1.
The workflow, which uses multiple input files and
generates multiple output files, is submitted via a
portal to a resource broker. The resource broker de-
termines the best compute and storage resources to
use for the workflow at this time based on some in-
formation from Ganglia [10] host monitoring and
the PingER [20] network monitoring system. Data
is staged using a replica manager, which uses a Re-
liable File Transfer service [28], which in turn uses
GridFTP [1]. A job is submitted to the Globus
Gatekeeper [6], which passes it to the Globus Job
Manager, which authorizes the user using Akenti,
which hands the job off to Portable Batch System
(PBS) [2] scheduler, which runs the job. Output
data files are then send to a High Performance Stor-
age System (HPSS) [15] installation using the Stor-
age Resource Manager (SRM) [30] middleware.

This workflow uses many software components,
any of which may potentially fail due to soft-
ware, hardware, or network problems. At a mini-

Figure 1. Example Grid Workflow.

mum, the example above uses the following com-
ponents: a Grid portal, resource broker, Ganglia,
PingER, replica manager, Reliable File Transfer
service, GridFTP service, SRM service, Globus
Gatekeeper, Globus job manager, Akenti, PBS, and
HPSS. The application itself may also use external
components.

We will refer back to the above use-case as we
discuss the importance of using GIDs.

2 Related Work

In this section, we describe some related work in
the area of Grid workflows and Grid monitoring.

2.1 Global Clock Synchronization with NTP

Much has been written about the theory of global
clock synchronization (e.g., [26]). In distributed
systems, the dominant implementation is the Net-
work Time Protocol (NTP). Globally synchroniz-
ing clocks with the Network Time Protocol (NTP)
is, by now, common practice. It is configured by
default in most flavors of Linux; in fact, NTP is ar-
guably the oldest continuously used protocol on the
Internet. Although its accuracies of “low tens of
milliseconds on WANs, submilliseconds on LANs”
[25] are not ideal, they are often sufficient for Grid
troubleshooting. And, anecdotally, our experience
is that the networks used for Grid computing tend
to have accuracies even better than tens of millisec-



onds, more often in the range of two to five mil-
liseconds.

2.2 Grid Workflow Engines

Althoughworkflowis a familiar concept in Com-
puter Science, implementations of workflow en-
gines for the Grid are still in the early stages. One
of the more widely used engines is the Condor
[18], Directed Acyclic Graph Manager(DAGMan),
which is a meta-scheduler that interfaces with the
standard Condor scheduler. The DAGMan submits
jobs to Condor in an order represented by a directed
acyclic graph (DAG) and processes the results. To
monitor DAGs, Condor sends status andstandard
error, output from a running DAG back to a user-
specified log file. This monitoring information is
not end-to-end: it does not include application, net-
work, or host data, or monitoring data from jobs
that are handed off to other schedulers such as the
Globus JobManager. Because a DAG is itself a
Condor job, it is assigned Condorjob clusteriden-
tifier, but this identifier is not propagated outside
of Condor components. In order to get host and
network status, Condor provides the Hawkeye [13]
monitoring tool, but the integration of the Hawkeye
sensor data with the built-in Condor job monitoring
is a work in progress.

The Pegasus [8] workflow system provides an
extra layer of abstraction on top of DAGMan. In
Pegasus, users provide anAbstract Workflowthat
describes virtual data transformations. This is
transformed into aConcrete Workflowthat contains
actual data locations. This concrete workflow is
submitted to DAGMan for execution. The monitor-
ing and identification of the workflow in Pegasus
are essentially the same as for DAGMan.

The preceding systems are not built on Web
Services technologies. However, Web Services is
becoming an important part of Grid functional-
ity. In the Web Services community, workflows
are addressed in several specifications, including
the Business Process Execution Language for Web
Services (BPEL4WS) [3] specification from IBM,
and the OASIS Web Services Coordination Frame-
work specification [19]. The Web Services Re-
source Framework (WS-RF) [31] is a convergence
of Web Services technologies with the Open Grid

Services Architecture (OGSA) [9]. Several groups
anticipate using WS-RF for executing Grid work-
flows.

2.3 Grid Monitoring

There are a number of distributed monitoring
projects that can provide the raw data needed for
analysis of end-to-end performance. Cluster tools
such as Ganglia [10] and Nagios [22] can scalably
provide detailed host and network statistics. This
data can be integrated into monitoring frameworks
such as the European Data Grid’s Relational GMA
(R-GMA) [4], the Globus Monitoring and Discov-
ery Service (MDS), or Monitoring Agents using
a Large Integrated Services Architecture (MonAL-
ISA) [24].

At LBNL we have developed the NetLogger
Toolkit [12], which provides non-intrusive instru-
mentation of distributed computing components.
Using NetLogger, distributed application compo-
nents are modified to produce time-stamped logs
of interestingevents at all the critical points of the
distributed system. NetLogger uses a standard data
model, allows for dynamic control of logging gran-
ularity, and can collect monitoring data in a rela-
tional database.

There are many more Grid monitoring tools. In
fact, the main challenge for current Grid monitor-
ing efforts is interoperability between implementa-
tions: there are many competing sensors, data mod-
els, formats, and protocols. We do not discuss how
to solvethis problem here, but we do believe that
adoption of a standard GID across monitoring com-
ponents will augment and help drive Grid monitor-
ing interoperability efforts.

3 Grid Workflow Identifiers

In this section, we discuss the representation of
GIDs and the interfaces needed for Grid Services to
support them.

3.1 Creating Identifiers

The GID should be chosen at the root, or origina-
tor, of the workflow, so that it can propagate to all



components. The originator could be a Web por-
tal, Grid meta-scheduler, or other client program.
A primary requirement for GIDs is that they be
unique within the scope of the workflow. On the
Grid, this usually means that they must be unique
in space and time, particularly if the results are to
be archived or shared. Although distinct identifiers
in a local scope could be mapped to globally unique
ones post-hoc, this mapping process is a potential
source of errors that can be avoided by simply cre-
ating a globally unique identifier to begin with.

Creating a globally unique identifier is not hard.
Procedures for creating a Universal Unique Identi-
fier (UUID) [29] are specified in ISO 11758 [16]
and in the documentation for the OSF Distributed
Computing Environment [7]. In both specifica-
tions, UUIDs combine a name from some centrally
administered namespace tied to the host (the net-
work hardware address, DNS, etc.) with a high-
resolution timestamp. On most operating systems,
including Linux, Mac OS-X, and Windows, using
the OSF DCE universal identifiers is as simple as
running the program uuidgen or making API calls
to the libraryuuidlib.

3.2 Integration with Grid Services

Propagating GIDs from the workflow originator
to all the workflow components is the most tech-
nically challenging part of using GIDs. Referring
back to the Grid workflow from Section 2, each
edge in the workflow graph (Figure 1) can be seen
as two transfers of the GID: one between Grid com-
ponents, and a second transfer from the component
to its logging facility. Some mechanism must be
added to existing software for this to work. We see
two basic approaches to this problem. The first ap-
proach is to modify, component-by-component, the
existing interfaces to support transfer of the GID.
This is easier in the short term, and is the approach
we took to perform the experiment described in
Section 5.0

The second approach is to integrate GIDs at
the ground floor of a general-purpose Grid frame-
work such as the Open Grid Services Architecture
(OGSA) [9], on which the Web Services Resource
Framework (WS-RF) [31] is based. We think that
this solution has advantages in the long term, be-

cause it allows components to change their ser-
vice definitions independently of the GID interface.
Also, it does not require an ongoing programming
effort by all the users of Grid software. On the
other hand, this approach requires a standardiza-
tion effort. The choice of implementation technol-
ogy is secondary, but two possibilities are that all
Grid services could support a standard WSDL [5]
portType for GIDs, or the WS-RF framework could
support carrying the GID in a SOAP [11] header
field. As an example of the latter, an element called
GID in an officially sanctioned namespace, here
assigned the prefixgridns could be added to the
SOAP header:

<SOAP-ENV:Envelope>
<SOAP-ENV:Header>

<gridns:GID
SOAP-ENV:role=‘‘http://www.ggf.org/Workflow">
(GID goes here)

</gridns:GID>
</SOAP-ENV:Header>

<SOAP-ENV:Body>
(message contents)

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

The SOAP-ENV:role attribute indicates the
namespace URI of the message receivers (either the
ultimate receiver or intermediaries along the way),
in SOAP parlance called actors, that should look
at this header. Actors that do not know about the
namespacehttp://www.ggf.org/Workflowwill sim-
ply ignore the GID header.

4 Standard Component Lifecycle Events

Tracing the progress of Grid workflow is diffi-
cult if there areholesin the monitoring logs where
the workflow leaves one component and reappears
several components down the line. Filling these
holesafter the workflow has already started is dif-
ficult. Even if there are well-documented control
APIs, a workflow, unlike a process on a single host,
is tricky to pause, restart, or query for information
that it is not already pre-configured to log. There-
fore, it is important that all Grid components are
configured to perform at least a minimal level of



logging. Specifically, every Grid component should
log at least one monitoring event when it starts and
one just before it ends, indicating failure or success.
This technique (in coordination with GIDs) allows
troubleshooting systems to see which components
are associated with the workflow, and to determine
which of those components completed successfully,
failed, or are still executing.

At a minimum, thestart andstopevents, should
have a timestamp, name of the event, host (or host
pair for network events), and a GID. Thestopevent
should also include a status code. Although Grid
performance analysis benefits from much more de-
tailed logging than this, the component lifecycle
events alone provide a reasonable overview of the
relative time spent in various Grid components.
This is illustrated in the graphs of experimental re-
sults shown in the next section.

5 Experimental Results

At the IEEE Supercomputing Conference in
November 2003 (SC2003), we demonstrated trac-
ing a workflow for a distributed biochemistry
computation called AMBER [27]. The follow-
ing components were instrumented with NetLog-
ger: pyGlobus (pyglobusrun, pyglobus-url-copy),
the Globus GateKeeper and JobManager, Akenti
(access control policy library), and AMBER.

Start and end events, with GIDs, were logged for
each component. From these monitoring events, we
could visualize the file staging, remote execution,
and access-control steps of the job. The demonstra-
tion GUI used the status and error codes from the
NetLogger messages to draw alifeline (line con-
necting successive events on the Y-axis vs. time
on the X-axis) of events that indicate to the user
the progression of the file staging and job execution
components.

5.1 Experimental Procedure

For this demonstration our methods of insert-
ing the GID into the logging were ad-hoc and
specific to the components we were using. This
task was simplified by our use of pyGlobus [17],
which provides high-level Python language wrap-
pers for Globus Toolkit components. We quickly

Figure 2. Amber Workflow.

integrated NetLogger’s Python API with pyGlobus
to create instrumented versions of the pyglobus-
url-copy and pyglobusrun programs. The GID is
communicated to the NetLogger instrumentation
in each component through an environment vari-
able that contains a URL of the formlog destina-
tion?constGID=value. This sets the file or net-
work destination for the monitoring events, and
also addsGID=value to all events. Using this fea-
ture, we added GIDs to all NetLogger-instrumented
components without changing the instrumentation
itself or re-compiling the components. For more
details on NetLogger URLs, see [23].

5.2 Analysis of Results

To illustrate how GIDs help to correlate the re-
sults, we show, in Figure 2, two versions of the
same monitoring data. Both graphs have six sep-



arate AMBER jobs, of varying length. Each job
stages its data, submits to the Globus GateKeeper,
gets authorized by Akenti, runs the AMBER ap-
plication, and then returns the results. In the first
graph, the GID is ignored and only time correlation
is performed. In the second, the GID is used to con-
nect successive events into a lifeline. Note how the
monitoring events for the entire life of the first job,
or during the overlaps of the third and fourth jobs
between 75 to 100 seconds (circled in the figure),
are clarified with the addition of GIDs.

Not discussed in this paper is NetLogger’s acti-
vation service, which provides the ability to acti-
vate more detailed instrumentation and debugging
information in a running process. This allows one
to drill down to find the source of problems or bot-
tlenecks. This is described in more detail in [12].

5.3 Workflow-Independent Monitoring Data

Some monitoring data cannot be directly associ-
ated with a particular workflow. For example, host
monitoring data (CPU, disk, memory, etc.) or net-
work monitoring data can encompass, at a given
point in time, any number of workflows. Some-
times, as noted in Section 3.2, with other types of
context we can infer the GID. But this is not always
the case. As a fallback, we must use time stamps. A
graph showing this type of analysis is shown in Fig-
ure 3. In this graph, it is clear that increased CPU
utilization, shown at the bottom of the graph, corre-
lates with decreased performance for the AMBER
job.

6 Open Issues

A GID could be designed to provide some ad-
ditional information about the workflow itself, for
example to indicate the parent-child relationship
among workflow nodes or contain metadata about
the originator of the workflow. We do not yet have
enough experience to state whether this additional
information would be worth the inevitable extra
complexity.

Figure 3. Amber Instrumentation with CPU
monitoring.

7 Conclusion

Troubleshooting a workflow in current Grid en-
vironments is difficult. By default, many compo-
nents produce no monitoring data and, even when
they do, the monitoring data is difficult to correlate
with the data from other components in the same
workflow. We believe that an important first step to
solving this problem is to build into the Grid infras-
tructure standard interfaces to Grid workflow iden-
tifiers (GIDs), and to add to every Grid component
standardized lifecycle monitoring events. In this
paper, we have outlined the technologies needed to
create GIDs and integrate them with Grid monitor-
ing services. We have also described the require-
ments for lifecycle monitoring events. Using re-
sults from our Supercomputing demonstration, we
have shown how these two elements, working to-
gether, can form the basis for a clearer understand-
ing of the behavior of a Grid workflow.

Acknowledgment

This work was supported by the Director, Of-
fice of Science. Office of Advanced Scientific
Computing Research. Mathematical, Information,
and Computational Sciences Division under U.S.
Department of Energy Contract No. DE-AC03-
76SF00098. This is report no. LBNL-57428.



References

[1] W. Allcock, J. Bester, J. Bresnahan, A. Cherve-
nak, I. Foster, C. Kesselman, S. Meder, V. Nefe-
dova, D. Quesnel, and S. Tuecke. Secure, efficient
data transport and replica management for high-
performance data-intensive computing, 2001.

[2] A. Bayucan and all. Portable Batch System: Ex-
ternal Reference Specification. Technical Report,
MRJ Technology Solutions, November 1999.

[3] Business Process Execution Language for
Web Services. http://www.ibm.com/
developerworks/library/ws-bpel/ .

[4] R. Byrom and all. R-gma: A relational grid in-
formation and monitoring system. InProceedings
of the Cracow ‘02 Grid Workshop, January 2003.
Web: http://edms.cern.ch/file/368364/1/rgma.pdf,
2003.

[5] R. Chinnichi, M. Gudgin, J. Moreau, J. Schlim-
mer, and S. Weerawarana. Web Services De-
scription Language (WSDL), Version 2.0 Part 1:
Core Language.http://www.w3.org/TR/
wsdl20/ .

[6] K. Czajkowski, S. Fitzgerald, I. Foster, and
C. Kesselman. Grid information services for dis-
tributed resource sharing, 2001.

[7] Distributed Computing Environment (DCE).
http://www.opengroup.org/dce/ .

[8] E. Deelman, J. Blythe, Y. Gil, and C. Kessel-
man. Workflow management in griphyn. In
Grid Resource Management, Kluwer, 2003.
http://www.isi.edu/ deelman/pegasus.htm, 1998.

[9] I. Foster, C. Kesselman, J. M. Nick, and
S. Tuecke. The physiology of the grid:
An open grid services architecture for dis-
tributed systems integration. Published online
at http://www.globus.org/research/
papers/ogsa.pdf , January 2002.

[10] Ganglia.http://ganglia.sourceforge.
net/ .

[11] M. Gudgin, M. Hadley, N. Mendelsohn,
J. Moreau, and H. Nielsen. SOAP Ver-
sion 1.2 Part 1: Messaging Framework.
http://www.w3c.org/TR/2003/
REC-soap12-part1-20030624/ .

[12] D. Gunter, B. Tierney, K. Jackson, J. Lee,
and M. Stoufer. Dynamic monitoring of high-
performance distributed applications. In11th
IEEE Symposium on High Performance Dis-
tributed Computing, 2002.

[13] Hawkeye: A Monitoring and Management Tool
for Distributed Systems. http://www.cs.
wisc.edu/condor/hawkeye/ .

[14] J. Hollingsworth and B. Tierney. Instrumentation
and monitoring. InThe Grid, Volume 2. Morgan
Kaufman, 2003.

[15] HPSS. http://www4.clearlake.ibm.
com/hpss/ .

[16] ISO/IEC 11578:1996 Information technology –
Open Systems Interconnection – Remote Pro-
cedure Call. http://www.iso.ch/cate/
d2229.html .

[17] K. Jackson. pyglobus: a python interface to the
globus toolkit. In Concurrency and Computa-
tion:Practice and Experience, 14 (13-15), 2002,
pp.1075-1084, 2002.

[18] M. Litzkow, M. Livny, and M. Mutka. Condor
- a hunter of idle workstations. InProceedings
of the 8th International Conference of Distributed
Computing Systems, June 1988.

[19] e. M. Little, E. Newcomer. Web services coordi-
nation framework (ws-cf). InOASIS WS-CAF TC
Public Documents, July 2003. http://www.oasis-
open.org/committees/download.php/4345/WSCF.pdf,
1998.

[20] W. Matthews and R. L. Cottrell. The pinger
project: Active internet performance monitoring.
IEEE Communications Magazine, pages 130–137,
May 2000.

[21] D. Mills. Network Time Protocol (Version 3)
Specification, Implementation and Analysis. IETF
RFC 1305. http://www.ietf.org/rfc/
rfc1305.txt .

[22] Nagios.http://www.nagios.org .
[23] NetLogger User Manual.http://dsd.lbl.

gov/NetLogger/manuals.html .
[24] H. Newman, I. Legrand, P.Galvez, R. Voicu, and

C. Cirstoiu. Monalisa: A distributed monitoring
service architecture. InCHEP 2003, La Jolla, Cal-
ifornia, March 2003.

[25] Network Time Protocol General Overview.
http://www.eecis.udel.edu/˜mills/
database/brief/overview/overview.
pdf .

[26] B. Patt-Shamir and S. Rajsbaum. A theory of
clock synchronization,. InProc. of 26th Symp. on
Theory of Computing, May 1994., 1994.

[27] D. Pearlman, D. Case, J. Caldwell, W. Ross,
T. C. III, S. DeBolt, D. Ferguson, G. Seibel, and
P. Kollma. Amber, a computer program for ap-
plying olecular mechanics, normal mode analy-
sis, molecular dynamics and free energy calcula-
tions to elucidate the structures and energies of
molecules. InComp. Phys. Commun. 91, pp. 1-
41, 1995.

[28] Globus Reliable File Transfer Service.
http://www-unix.globus.org/
toolkit/docs/3.2/rft/index.html .



[29] R. Salz and P.Leach. UUIDs and GUIDs.http:
//www.ietf.org/internet-drafts/
draft-mealling-uuid-urn-05.txt .

[30] A. Shoshani, A. Sim, and J. Gu. Storage resource
managers: Middleware components for grid stor-
age. In In Proceedings of the Nineteenth IEEE
Symposium on Mass Storage Systems, 2002.

[31] WS-Resource Framework.http://www-fp.
globus.org/wsrf/default.asp .


